
I 'A~rATON PGE J Form Approved
MENTATIN PAGNo.sIv 0704-0185

~Itmha o ae-qeI St~ ~'hsorw..r'iu'~g tht tfe fuw o~ er n su -tsr¶io.s. w~rcn.mq *aistirg data smouces.

A D -A 2 7 8 5 9 7.~n ofE ~0 c icn for~mation. =aidCC# ens ardJ q th I .rd.,i estimatt or any ottht ammac of tht%

REPORT DATE 3. REPORT TYPE AND DATtS COVERED
IN 1 1 1FINAL/Ol AUC 90 TO 30 SEP 93

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

COMPUTATIONAL MATHEMATICS LABORATORY
FOR MULTISCAILE ANALYSIS (U)

6. AUTHOR(S)

9806/DARPA
Professor Raymnord Wells, Jr. AFOSR-90-0334

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(IS) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Rice University
Computational Mathematics LaboratoryOST 94 24
Houston TX 77251 &0.M

9. SPONSORING /MONITORING AGENCY NAME(S) AND AD AUS 10. SPONSORING!/MONITORING
AGENCY REPORT NUMBER

AFOSR/NMf
110 DUNCAN AVE, SUITE B115 D T AFOSR-90-0334

12a. DISTRIBUTION/-AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED UL

13. ABSTRACT (Maximum 200 words)

The research done by the Computational Mathematics Laboratory (CML) at Rice
University with the support of ARPA and AFOSR Grant. The principal research
activity was; (1) Fundamental Wavelet Research, (2) Applications of Wavelets to
Partial Differential Equations, (3) Applications of W~avelets to Digital Signal
Processing.

DTITC ~ 9Cii

14. SUBJECT TERMS ¶5 U R PAGES

16. PRICE C DE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

U14CLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR(SAME AS REPORT)

NSN 754001 -Z8O.SSOO Standard Form 298 (Rev 2-89.)
't-Mcr,~bd ty APASI stl Z39. 41



AOSR.. 9 4 0 2 49

Approoed tor publto release 3
distribution unlimited.

Research Activities of the Computational Mathematics Laboratory,
Rice University, 1990-1993

Final Technical Report

February 11, 1994

1 Introduction

This report represents the final report to ARPA and AFOSR concerning the research done by the

Computational Mathematics Laboratory (CML) at Rice University with the support of ARPA by

means of a grant administered by AFOSR (Grant No. 90-0334).

The principal research activity concerned the following three areas:

"* Fundamental wavelet research

"* Applications of wavelets to partial differential equations

"* Applications of wavelets to digital signal processing

The details of the research are contained in 69 technical reports which are listed at the end

of this report and which are available from the laboratory. The vast majority of these reports have

been or are in the process of being published as indicated in the listing.

This report will summarize the main results from the point of view of the differential equations

group and the digital signal processing group, both of which have made significant contributions to

the area of fundamental wavelet research, and specifically to these application areas, respectively.

The principal results in basic wavelet analysis concern the extension of wavelets from mul-

tiplier 2 to higher rank (or larger M for M-band wavelets to use the signal processing language).

This includes primarilty the parametrization of such wavelet systems, and the special theory of

cosine-modulated wavelets, as well as many other special families. Basic phenomena of sampling,

interpolation, optimization, and modeling have all been considered in the wavelet context.

In the context of the study of differential and integral equations a number of results have

been established concerned with the representation of differential and pseudodifferential operators
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and with the solutions of boundary value problems. The basic principle of fictitious domains has

been used as a tool to translate a boundary value problem to an integral equation on a larger

rectangular region in which the boundary data and the geometry of the boundary become encoded

in the inhomogeneous term of the resulting discretized linear and nonlinear algebraic equations

(using the wavelet-Galerkin discretization principle).

The basic problems which were solved by this methodology include:

"* Solving Dirichlet and Neumann problems at a single scale for linear and nonlinear elliptic

boundary value problems with very general boundary where the basic coding is independent

of the geometry of the boundary

"* Solving Dirichhet problems using a wavelet-based multilevel preconditioner for a conjugate-

gradient iteration method which is far superior to a normal conjugate-gradient method

"* Formulating and solving a highly singular anisotropic model differelitial equation with periodic

boundary conditions with a wavelet multigrid algorithm which yields an iteration matrix with

a spectral radius smaller than 1 and which is independent of the mesh size and the anisotropy

parameter

The main results of the research on signal processing using wavelets include:

"* Methods for optimizing the family of wavelet basis functions were developed to allow tailoring

the wavelets to the particular signals being analyzed.

"* A theory and set of tools for using time-varying wavelets has been developed. This allows

changing the nature of the basis functions during an analysis while maintaining all of the

properties of the wavelets.

2 Summary of Partial Differential Equations Research:
R. 0. Wells, Jr., Andreas Rieder and Xiaodong Zhou

During the year 1993 the CML investigated the fast and efficient resolution of a class of linear

systems arising by a wavelet-Galerkin discretization of the following elliptic model problem

-- in wER, (1)

u=g on Ow, (2)

2
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via a penalty/fictitious domain formulation introduced e.g. in [81, [38] and [39]. The constants a

and 3 in (1) are positive and w is an open domain in R 2 (however, there is no principal restriction

to two dimensions).

The penalty/fictitious domain formulation of the boundary-value problem (1), (2) becomes:

let fl - [0, R]2, W C 11, be the fictitious domain and c > 0 the penalty parameter. Then, we seek a

u" E H,(!l), the Sobolev space of order 1 with periodic boundary conditions on Q, such that

j(au'v, + 1u'vy + u'v)dxdy + L u'vds j vdxdy + If vds (3)

for all v E Hp(fl), where, in (3), 1 is an arbitrary L2-extension of f in S1. The solution u' converges

to fi in Hl(f?) for c - 0, where fi is the Hl(fl)-extension of the solution of the following variational

problem: fi E HI, ii - g on Ow,

in (avz +,i vy + iiv)dxdy = jfvdxdy

for all v E HP, such that v = 0 on o9w.

Using the Daubechies scaling functions yp of order N > 3, (2], we define the periodic wavelet-

Galerkin space at level L by (R E N)

VL = vL(0, := ) v E L (0,R) : VW= cCk k x, [0, R(,
kEZ

with Ck = Ck+2LR}

with WL(x) = 2 L/2 p( 2 LX - k), and we approximate H' by the tensor product XL = VLP ® V•. The

penalty problem (3) restricted to XL is equivalent to the linear system,

AL, UL' = L A+ E-MLgL, (4)

see [9], [39], with appropriate right hand sides fL, 9L E Rn, n = nL = dim Vt -= 2LR. The stiffness

matrix AL,, is of the form AL,, = AL+C-1 ML E RInn, where AL is symmetric and positive-definite.

The diagonal matrix ML corresponding to the boundary integrals in (3) has the diagonal entries

either 1 or 0.

The presence of the penalty term E- ML in (4) requires special attention in order to achieve

an efficient solver. Therefore, we first reduce the influence of the penalty parameter E. The family

of solutions {UL},>o of (4) has the limit UL which is given by

UL " * + MLgL,
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where ý" is the unique solution of

(I- ML)AL(I - ML) = (I- ML)(fL - AL.'LgL) (5)

in the range R(I - ML) of (I - ML), see [9]. Instead of the system (4) we choose to solve (5). Since

(I - ML)AL(I - ML) is symmetric and positive-definite on R(I - ML) we can use the conjugate

gradient method (cg-method) for the iterative solution of (5).

A natural choice for a preconditioner of the cg-method acting on (5) is any symmetric iteration

for the fast solution of linear systems with matrix AL. The latter matrix can be interpreted as the

stiffness matrix of the following variational problem: find u E XL, such that

j(auXvX + ouyvi+uv)dxdy- = wvdxdy (6)

for all v E XL.

For the variational problem (6) we developed multilevel methods. In the isotropic case

(a ;ti3) the step-size independent convergence rate of these methods can be proved by techniques

closely related to those used for finite difference and finite elemente discretizations, see [9].

Things become more complicated in the anisotropic case (a «< 3 or a > 13). Here, we

developed a wavelet variation of the frequency decomposition multigrid method of Hackbusch [261,

[27], see [35]. This iteration is robust, that is, the convergence speed is not only independent of the

discretization step-size but also of the parameters a and 3, see [36].

Various numerical experiments presented in [9] show the efficiency of the multilevel methods

for (6) used as preconditioners for the cg-method applied to (5). However, an analytic statement

remains to be established and shall be considered in future research projects.

3 Summary of Research at the University of Houston:
R. Glowinski and T. W. Pan

Our work supported by ARPA during these last three years has been oriented to the following two

major directions:

(i) Wavelet Approximation of Incompressible Viscous Flow

(ii) Fictitious Domain Methods for Partial Differential Equations.

Concerning (i), we think that we have fully elucidated the always delicate issues about the

compatibility conditions between the pressure and velocity approximations. From that point of

4



view, wavelets are ideally suited to address these issues since if 6 is the smallest length scale used

for the velocity approximation, we should use similar scaling and wavelet functions to approximate

the pressure space, but with 26 as smallest scale. Indeed this wavelet motivated analysis has been

also useful to better understand compatibility conditions between finite element spaces used to

approximate viscous flow problems and also problems from Control Theory. Indeed, in [4] we have

explored the analogy between these various problems and shown how these considerations apply to

wavelet approximations.

Concerning (ii), we have combined fictitious domain methods to wavelet approximations to

obtain robust wavelet solution methods for various classes of elliptic problems. Also, these fictitious

domain methods in which one tries as much as possible to decouple the approximation of the actual

geometry from the approximation of the imbedding space have proved very useful for finite element

methods and have provided tools allowing the solution of problems in nonregular geometries via

the use of regular means. Our first investigations and numerical tasks were initially concerned with

simple elliptic problems such as Neumann ([51) and Dirichlet ([6]). Since then, these methods have

been applied to the solution of incompressible viscous flow problems ([7]) and very recently to the

solution of scattering problems by obstacles of nonregular shape. ([10]). These methods initially

developed and tested with finite element approximations are presently investigated in order to

develop wavelet implementations, including implementations on parallel machines.

4 Summary of Research: W. W. Symes and G. Bao

Prof. Symes and postdoctoral associate Dr. Gang Bao worked on the representation of pseudodif-

ferential operators. Various classes of these operators have been discussed in the wavelet literature,

and indeed singular integrals on the line have been shown to be well-approximated with sparse ma-

trices in wavelet bases, in work of Meyer, Beylkin, Coifman, Rohklin, Jaffard, and others. However

multidimensional nonseparable pseudodifferential operators did not seem to have been investigated

in this regard, but form the class most useful in wave propagation theory, Prof. Symes' long-term

interest.

Our work reached two basic conclusions. First, at least tensor product wavelet bases do not

produce particularly sparse representations of these operators. Second, we used the representation

of the pseudodifferential operators as the algebra generated by differential operators and all powers

of the Laplacian to derive an efficient Fourier transform based algorithm for evaluation of the

operator action. We implemented this algorithm in MATLAB and in CM Fortran, and tested it
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successfully. It evaluates the action of an operator in d diminsions on a function represented on a

grid with Nd gridpoints in O(NdlogN) operations. It is hard to see how another algorithm, whether

based on wavelet or some other technology, could have a more favorable asymptotic complexity.

5 Summary of Signal Processing Research: R. A. Gopinath,

J. E. Odegard, C. S. Burrus and H. Guo

5.1 Introduction

This section contains a summary of the work done at the Computational Mathematics Laboratory

(CML) at Rice University by the Digital Signal Processing (DSP) gruap during the period 1990-

1993. The main thrust of the research has been toward developing a theory for wavelet analysis in

signal processing and in particular the development of relations between wavelet theory and filter

bank theory. A detailed presentation of the work can be found in the numerous papers and technical

reports written by members of the DSP group (see the references to papers and technical reports by

Burrus, Gopinath, and Odegard appended). Concurrent with the theoretical development we have

also worked on developing a Matlab toolbox for wavelet design and analysis "rice-viet-tools"

which is available via anonymous ftp from "cml. rice. edu" in the directory "pub/dsp/software".

In the following paragraphs we will give a brief outline of various projects which have contributed

to the main thrust of our research.

5.1.1 Time-Varying M band Multiscale Analysis

Recently it was discovered that time-varying design/analysis could be associated with the mul-

tiresolution concept. The time-varying concept generates a framework for performing "adaptive"

signal dependent wavelet analysis and subband analysis. Research on time-varying filter banks and

wavelet multiresolution in the DSP group [22,12,111 has been on the development of a complete

factorization of all optimal (in terms of quick transition) time-varying FIR unitary filter bank tree

topologies. This has potential applications in areas such as adaptive subband coding, adaptive tiling

of the time-frequency plane, and the construction of orthonormal wavelet bases for the half-line and

interval [30,29,33,3]. A simple efficient implementation algorithm also comes with the factorization

ensuring that even the most complex tree topology can be adapted with minimal overhead. Explicit

formulas for transition filters/functions are derived for arbitrary tree transitions. The results are

independent of the number of channels and the length of the filters (as long as they are FIR),

implying that some of the efficiency reasons for considering only binary time-varying trees is not
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valid any more. Time-varying wavelet bases (different bases for different segments of the real line)

are also constructed.

5.1.2 Flexible M-band Multiscale An-dysis

Wavelet analysis gives a flexible method for the analysis of non-stationary signals. One can simulta-

neously analyze short-duration wide-band signals and long-duration narrow-band signals. However.

the traditional 2-band wavelets cannot be used to analyze signals like a long-duration RF pulse. To

overcome this problem we have introduced M-band wavelet frames and wavelet tight frames. By

specializing on a well-known parameterization of unitary filter banks we have obtained a complete

parameterization of compactly supported M-band wavelet bases (see [18,37] and [28]).

5.1.3 Modulated Filter Banks and Wavelets

We formulated and developed a complete theory of a special class of filter banks that are easy

to design and implement. The M filters in this filter bank are obtained as cosine modulates of a

prototype filter. A complete parameterization of such filter banks has been obtained. Wavelets

associated with these filter banks have also been characterized. The advantage of these wavelet

bases is that the scaling function uniquely determines the wavelets (i.e., there is no need to use a

state-space technique to generate wavelets) [14,21,16]

5.1.4 Unitary FIR filter banks with symmetry

In image processing applications, the filters in a filter bank are required to be linear-phase. More-

over, one can impose various symmetry restrictions on the filters (like linear phase). For a number

of symmetry classes, a complete parameterization of unitary filter banks and associated wavelet

tight frames have been obtained. [20]

5.1.5 Optimal and Robust Multiresolution and Sampling

This research focused on developing the theory and algorithms for obtaining an optimal wavelet

multiresolution analysis for the representation of a given signal at a predetermines scale in a variety

of error norms [25,341. Moreover, for classes of signals, the theory and algorithms was extended to

permit the designing of a robust wavelet multiresolution analysis. All results were derived for the

most general case of a M-band multiresolution analysis for arbitrary LP error norms. An efficient

numerical scheme was derived for the design of the optimal wavelet multiresolution analysis when
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the least-squared error criterion is used. An important corollary of the analysis is the wavelet

sampling theorem, which says that the Nyquist rate samples of a bandlimited signal and the scaling

expansion coefficients at a prescribed scale contain the same amount of information (despite the

scaling function not being bandlimited). Another corollary is that bandlimited signals are essentiauy

scale limited [34]. Explicit algorithms for the computation of the higher level wavelet coefficients

in terms of scaling function coefficients is also obtained [24].

5.1.6 Oversampling Invariance of Wavelet Frames

Given a wavelet frame, if one oversamples by considering not just integer translates, but fractional

integer translates, one gets a new set of functions. We have characterized conditions on the over-

sampling factor that are necessary and sufficient for the new redundant set of functions to form a

wavelet frame. Redundancy is desirable since it gives robustness to numerical errors [15].

5.1.7 Completion Problem for Filter Banks

In the design of an M-channel filter bank, sometimes application requirements specify a subset, say

L of the M filters. A natural question is what are the conditions on the L filters such that they

can be complemented with M - L filters to give rise to a perfect reconstruction M-channel filter

bank. Necessary and sufficient conditions for such completions, along with a parameterization of

the M - L filters has been obtained for FIR and IIR filter banks

5.1.8 Fundamental tools for Multirate Signal Analysis

Classically multidimensional filter banks have been constructed using a tensor product of one di-

mensional filter banks. A number of problem arise in the analysis of non-separable multidimensional

filter banks, all of which can be traced to the fact that uniform sampling in multiple dimensions is

on lattices that are governed by integer matrices. Overcoming this problem, a complete set of tools

for the analysis of multidimensional multirate systems has been developed. Using these results, the

multidimensional rational sampling rate filter bank problem has been reduced to a multidimensional

uniform sampling rate filter bank problem. [19].

5.1.9 State-space approach to wavelets

In the construction of M-band wavelets from filter banks, the scaling function is first constructed,

and from it the wavelets. We introduced a novel state-space approach to the construction of



wavelets (from the scaling function). This is the most efficient way to construct wavelets for

compactly supported wavelet tight frames [13].

5.1.10 Wavelet-Galerkin Approximation of Differential Operators

Wavelets give a good discrete representation of differential operators (see [1,31,32,23]), and they

also give good approximation of "smnooth" analog filters. As is shown in the latter two papers in

two different manners the degree of approximation is directly related to the length of the scaling

vector of the wavelet system.

5.1.11 Wavelet Based Lowpass/Bandpass Interpolation

Orthonormal wavelet bases can be used for efficient lowpass/bandpass interpolation, with the low-

pass interpolation exact for polynomials of arbitrary large degree by suitable choice of the wavelet

[17]. Moreover, the natural wavelet interpolation at a given level in terms of approximating scal-

ing coefficients by sample values converges in the H' norm to a given smooth function which is

important for applications to numerical solutions of differential equations (see [40])
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